Monday, April 14, 2025

  • RSS
  • Design and Simulation:These are some books which are recommended as a reading list. 1- Aerodynamics of Road Vehicles from Fluid Mechanics to Vehicle Engineering. Edited by Wolf-Heinrich Hucho 2- Hucho-Aerodynamik des Automobils Stromungsmechanik.Warmetechnik. Fahrdynamiik.Komfort
  • Optimizing Performance and Fuel Economy of a Dual-Clutch Transmission Powertrain with Model-Based Design.
  • Wind Turbine DesignPrimary objective in wind turbine design is to maximize the aerodynamic efficiency, or power extracted from the wind. But this objective should be met by well satisfying mechanical strength criteria and economical aspects. In this video we will see impact of number of blades, blade shape, blade length and tower height on wind turbine design.
  • Modelling Complex Mechanical Structures with SimMechanicsModeling physical components or systems in Simulink® typically involves a tradeoff between simulation speed and model fidelity or complexity: the higher the fidelity of the model, the greater the effort needed to create it..
  • Biomass Energy Vs. Natural GasIn 2009, natural gas prices plunged to below $4 per MMBtu where many "Experts" are saying that prices will remain low for decades as a result of technology break-throughs allowing for sizable increases in natural gas supply for North America. The Energy Information Agency (EIA) just released data projections reflecting this potential increased supply in natural gas.
Require content

Sunday, 22 August 2010

Biochar -- Gasification Temperature Formation

Posted by Sohail Azad On 00:21 No comments

From an engineering perspective, the most critical aspect in creating biochar is to maximize surface area (pore space) with an objective of trying to create surface areas approaching activated charcoal to maximize the capture/sequester of Greenhouse gases in soils (CO2, methane, nitrous oxide).


In order to achieve high surface areas the key engineering parameter of oxygen starved biomass gasification is temperature formation, where the optimal range is approximately 500 to 700 degrees C (~900 to 1,300 F).

While quite a bit of research is on-going to create biochar with small scale gasifiers (e.g., laboratory, stove, etc.), our research and demonstration effort is focused on large-scale, commercial up-draft gasifiers where the biochar is a waste product in creating biogas (for end-use applications such as product drying/heating, electricity, steam).

In our approach, we extract biochar (just above the incandescent zone) on a semi-continuous basis using nitrogen to �quench and cool� the biochar removed/recovered from the bed cooled to room-temperature for storage and eventual soils application. The recovery of biochar from the gasifier will not significantly impact the gasifier continuous operation of biogas generation for power/heat/steam. It is also important to note that our approach to "quench and cool" in a nitrogen environment is also attempting to address the extremely high carbon/nitrogen ratio of biochar.

On a final blog note, recent published studies suggest that biochar has the potential of sequestering ~12 percent of global CO2 emissions.

0 comments:

Post a Comment